Modern Technologies of Rice Growing Global Food and Environmental Safety August 9-12/08/2016

National Academy of Agrarian Sciences of Ukraine

GROWING RICE BY DRIP WITH LESS WATER AND ARSENIC FOR GLOBAL FOOD SECURITY Italian experience 2010-16

Alberto Vezio Puggioni Marco Panizza

NETAFIM GBU SOUTH EUROPE

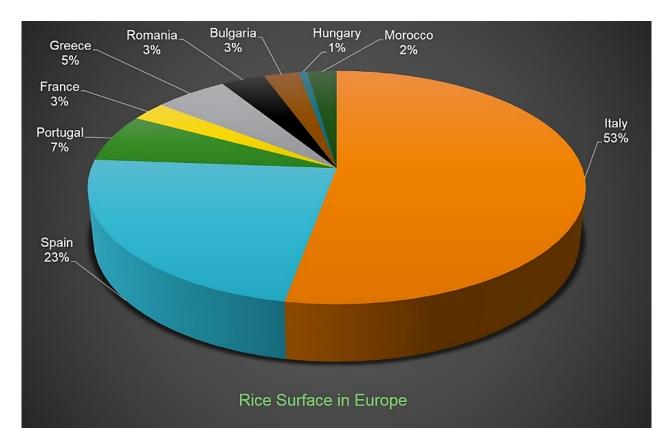
History of rice cultivation in Italy

- Probably introduced by Arabs in Sicily (14th Century)
- Middle Ages rice cultivated in botanical edges of monastic orders

Monks select the first seed

2

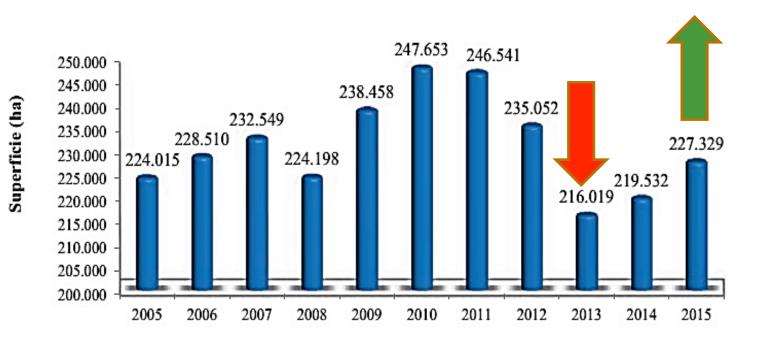
Cultivated over 500 years ago



RICE SURFACE IN EUROPE

Source: World Association of Agronomists - 2015 mod. 2016 Ente Risi

Country	ountry Surface (ha) %	
Italy	237.500	53
Spain	105.000	23
Portugal	30.000	7
France	12.000	3
Greece	25.000	6
Romania	15.000	3
Bulgaria	12.000	3
Hungary	3.000	1
Morocco	10.000	2
Total	449.500	100



▲ NETAFIM

3

ITALIAN RICE SURFACE 2005-2015

Source: Ente Risi

 After the reduction of surface, from 2010 to 2013, the situation in 2016 is getting better for price and evolution in crop management (minimum tillage, dry sowing, etc.)

ESTIMATION RICE SURFACE IN ITALY AT JULY 2016

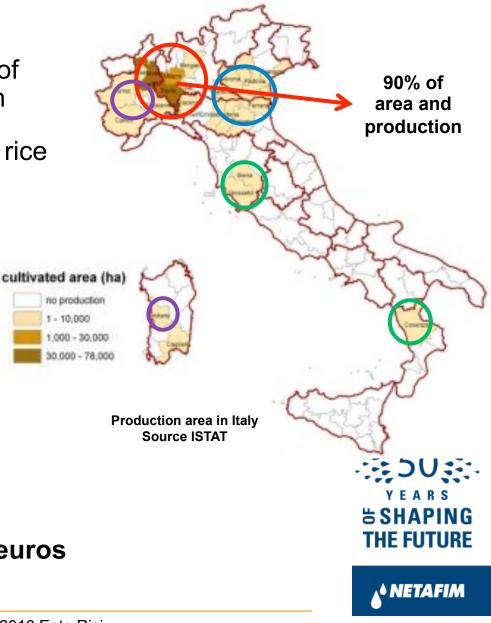
GRUPPI VARIETALI	Previsione Superfici 2016 (ettari)	Superfici 2015 (ettari)	Differenza	
GROTTI VARIEJALI			ettori	%
TONDI	72.800	56.946	15.854	27,84%
LIDO E SIMILARI	2.500	1.412	1.088	77,07%
PADANO E SIMILARI	350	820	-470	-57,32%
VIALONE NANO	5.200	6.056	-856	-14,13%
VARIE MEDIO	1.750	1.183	567	47,97%
LOTO • ARIETE E SIMILARI	34.200	45.594	-11.394	-24,99%
SANDREA	8.000	11.039	-3.039	-27,53%
ROMA E SIMILARI	14.000	9.959	4.041	40,57%
BALDO E SIMILARI	10.500	21.037	-10.537	-50,09%
ARBORIO E SIMILARI	22.000	17.125	4.875	28,47%
CARNAROLI E SIMILARI	21.500	15.065	6.435	42,71%
VARIE LUNGO A	11.000	6.048	4.952	81,88%
LUNGO B	33.700	35.044	-1.344	-3,84%
TOTALE	237.500	227.329	10,171	4,47%

237.500 ha in 2016

227.329 ha in 2015

+ 10.171 hectares increased

Increased surface + 4,47%


Source: Ente Risi

ITALIAN RICE

- Italy represent with 1.496.250 tons of paddy rice, 0,4% of world production
- Yield average 6,3 tons/ha of paddy rice

- 32% of total italian production is for Risotto Varieties
- 68% others
- Export in EU: 56% of production
- Export in other Countries: 12%
- Turnover export 460-490 milion of euros (510-543 milion of dollars)

VARIETIES IN ITALY AND «RISOTTO»

- In Italy are registered 185 varieties of rice
- 30 are actually cultivated in relevant area
- The risotto varieties are the most important

Risotto is a kind of coocking process, very popular in Italy and needs kind of rice with high quantity of Amilose starch
Its main feature is the retention of the starch jelly that due to the SHAPING THE FUTURE

RESEARCH TOPICS

From 2010-11 we drive research in aerobic rice irrigated by drip in collaboration with R&D Netafim Corporate mainly in the bold topics:

- a) Water use reduction
- b) Fertilizer use reduction
- c) Greenhouse gas emission reduction
- d) Reduction in leaching of fertilizers
- e) Power saving
- f) Reduction in manpower and labor
- g) Use of various soil types and topography
- h) Reduction in diseases and pests
- i) Arsenic uptake and Rice quality
- j) Weeds control and mulching

WATER USE REDUCTION

- A different approach to reduce water inputs in rice is to grow the crop like an irrigated dry crop
- Such as Corn or Cotton using modern irrigation technologies such as drip irrigation
- Field experiments indicated seasonal water requirement per hectare of drip irrigated aerobic rice was 7000-8000 m³/ha
- Potential yield of 10-12 tons/ha
- It is about 800-900 liters to produce 1kg of Rice with Drip Irrigation (instead of 3.000-5.000 by submersion).

THE PIONEER FARM: FOLETTI BROS. 2010

- In 2010 decide to try drip irrigation on 13 ha of rice Roma Var.
- SDI 35 cm depth, Uniram AS compensated drip
- 90 cm between lines, 60 cm between drippers, 2,3 liters/hour

SAVE WATER BY DRIP IRRIGATION BELLONE FARM 2011-12

Ale.

OBJECTIVES DRIPPING VS FLOODING

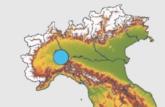
HWS =125% of ET0 MWS =100% of ET0 LWS = 75% of ET0

FS=Flooding System

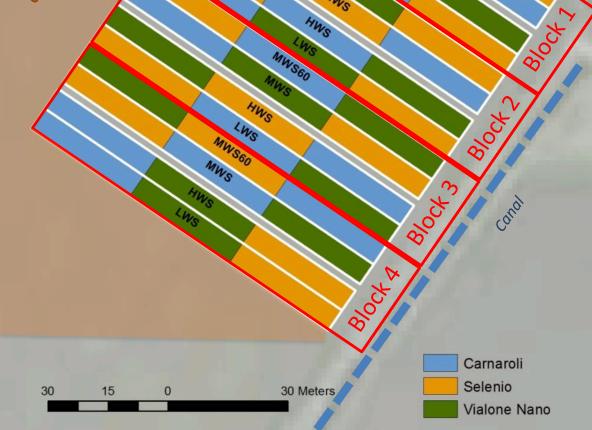
MATERIALS AND METHODS VARIETIES

VIALONE NANO

SELENIO

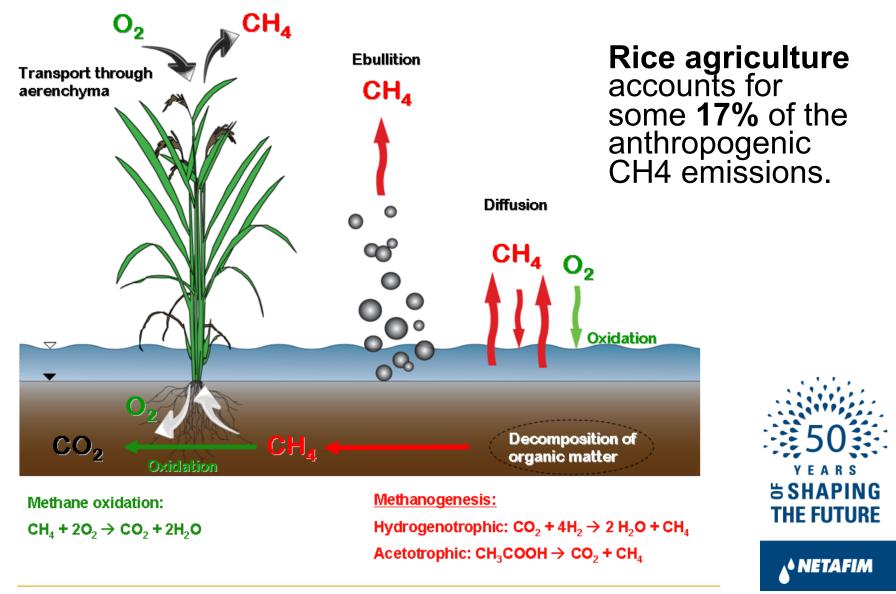


MATERIALS AND METHODS EXPERIMENTAL DESIGN Selection Control Condi


MWS60

Win

HWS



SAVE WATER: RESULTS

	WC [m ³ /ha]	Grain [kg/ha]	WU [m ³ /kg]	W _{saving} [%]
I-Kc	4,180	2,514	1.7	-52.2
I-150	5,880	3,080	1.9	-45.1
Control (flooded)	16,680	4,795	3.5	

GAS EMISSION FROM RICE PADDY: CH4

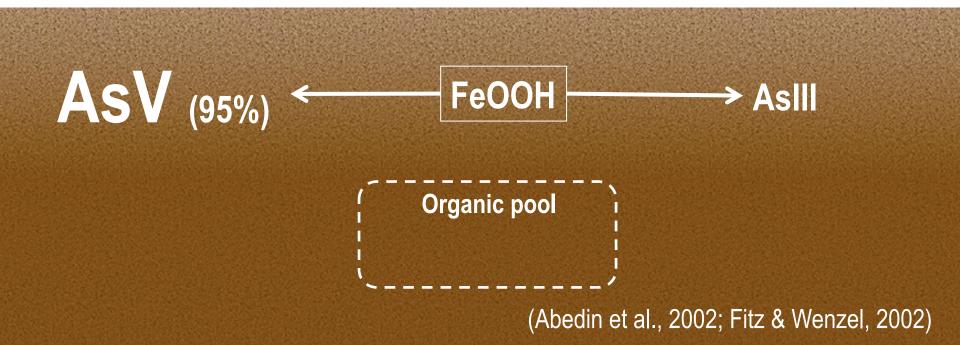
17 Source: Institute of Biogeochemistry and Pollutant Dynamics - Zurich

Data Monitoring 2013 Lolini Farm – Gro

Grosseto, ITALY

EMISSION MONITORING: ITALY TRIALS

Example of results of gas emission from rice by drip compared with conventional measured by fluxmeter				
EMISSION in AEROBIC RICE DRIP IRRIGATION		EMISSION in CONVENTIONAL RICE		
SENSOR#1		SENSOR#1		
SENSOR_TYPE: CH4	- 75%	SENSOR_TYPE: CH4		
FLUX (ppm/sec):	0.001	FLUX (ppm/sec):	0.004	
FLUX (moles/m^2/day)	0.00045 <	FLUX (moles/m^2/day)	0.00124	
SENSOR#2		SENSOR#2		
SENSOR_TYPE: CO2		SENSOR_TYPE: CO2		
FLUX (ppm/sec):	0.519	FLUX (ppm/sec):	0.623	
FLUX (moles/m^2/day)	0.18398	FLUX (moles/m^2/day)	0.22074	


 Extract from text reports of a comparison between CH4 and CO2 Drip Laterals and Paddy in submersion (after emptying)

Data Monitoring 2013 Lolini Farm – Grosseto, ITALY

ARSENIC UPTAKE

Low levels of As are naturally present in the soil (Matshullat, 2000) The background levels worldwide are around 5 mg kg⁻¹ (Mandal & Suzuki, 2002)

ARSENIC UPTAKE

The increased bioavailability of As under flooded conditions is the main reason for an enhanced As accumulation by paddy rice (Xu et al., 2008)

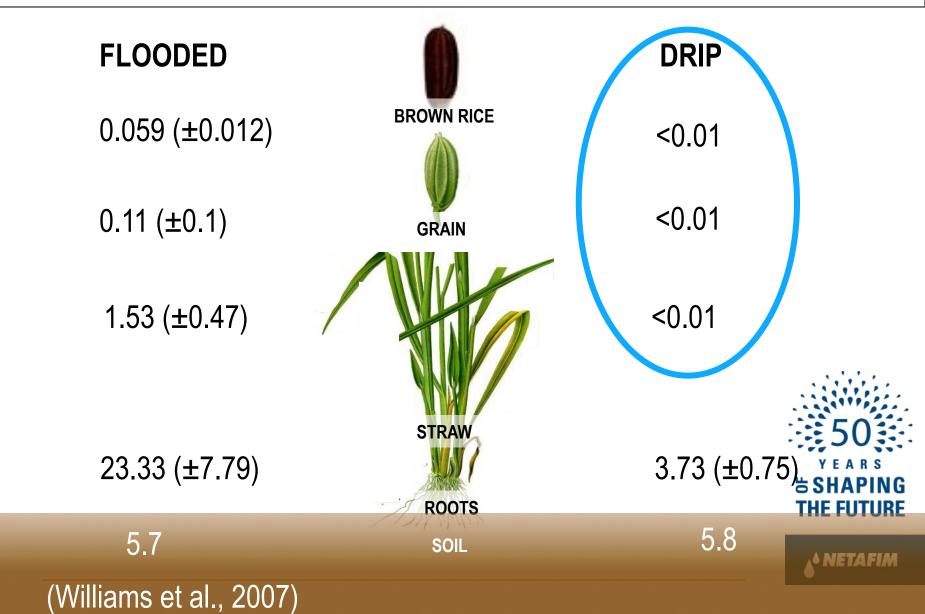
AsIII (70%)

Organic pool

(Abedin et al., 2002; Fitz & Wenzel, 2002; Takahashi et al., 2004)


Water saving and reduced arsenic uptake in aerobic rice (*Oryza sativa* L.): feasibility of drip irrigation under Mediterranean climate

G. Ragaglini, F. Triana, C. Tozzini, F. Taccini, A. Mantino, A. Puggioni, E. Vered, E. Bonari



OBJECTIVE

Evaluation of the potential of drip irrigation in reducing the risk of As accumulation and water consumption in rice, compared to the flooding system in field condition

RESULTS AS CONCENTRATION (mg kg⁻¹)

AZ. PRIORA 2013-14 - PIEDMONT RICE BY DRIP ON SURFACE: WEEDS CONTROL AND DELTA T^o PROBLEMS

AZ. MENSANELLO 2014 – TUSCANY RICE BY DRIP IN MARGINAL SOIL AND BAD WATER QUALITY

AEROBIC RICE AND DRIP IRRIGATION

Using drip irrigation: no weeds control due to the submersion.

 Using drip irrigation: no buffer of temperature due to submersion.

North Italy: the delta of temperature con achieve
15°C and this could be an issue for rice growth.

 We challenge those issues applying drip irrigation on surface 80cm between lines and 30cm between drippers with 1 liters/hour flow.

🜢 NETAFIM

 In collaboration of Turin University we investigate two different protocols of weeds control in drip irrigation.

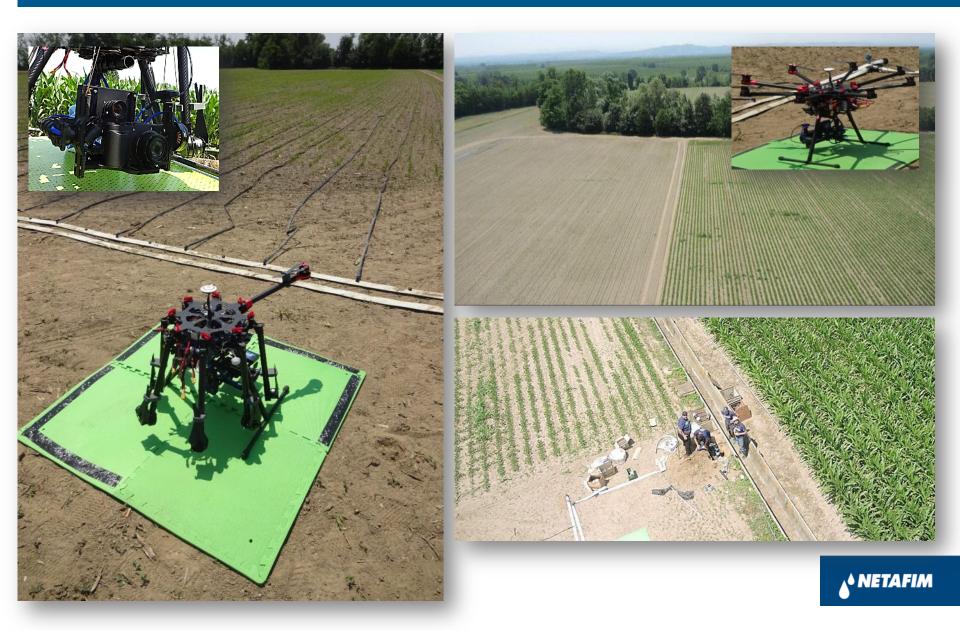
 One for conventional varieties, the second for *Clearfiled* varieties.

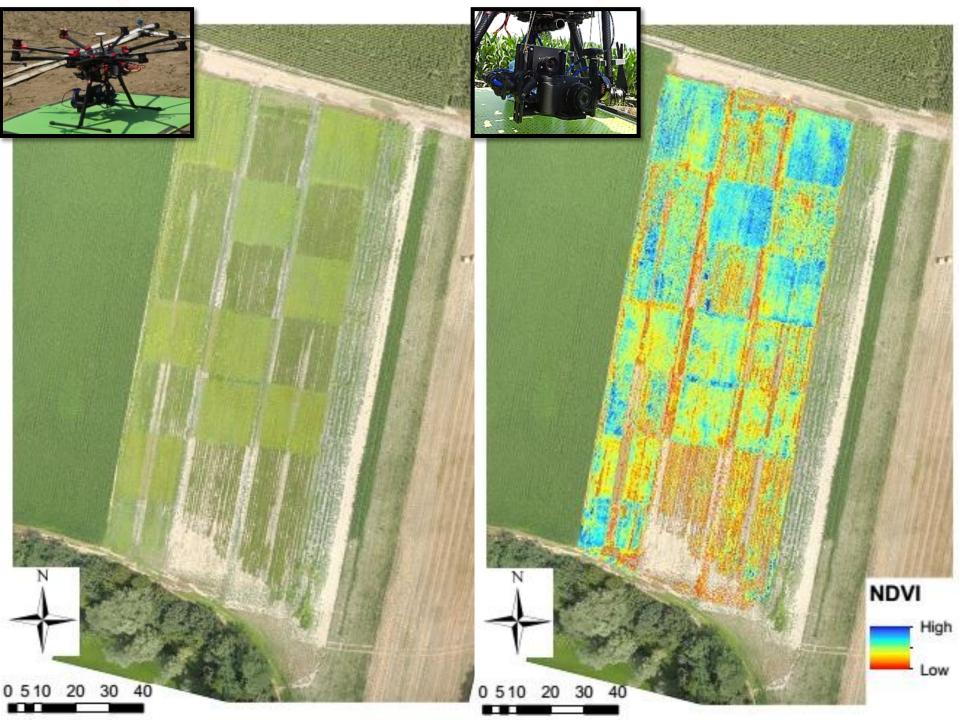
 The biodegradable mulching can help the plants to reduce the effect of delta T° keeping warm the area under mulch.

 Can also permit to reduce the number of treatments for weeds control.

🔥 NETAFIM

MULCH AND DRIPPERLINES IN 1 PASSAGE ON SEEDED SOIL


PUNCHING THE MULCH BY HAND



MULCH STRIPS WITH HOLES

DRONE Agron Fly & NETAFIM

FIELD DAY SEPTEMBER 2015

CLF

BEST RESULT WITH PROTOCOL IN CLEARFILED VAR.

DEMO FIELD EXPO 2015 USE SLOPE AND MARGINAL SOIL

Sorghum seeded in two times irrigated by drip by gravitation and solar pump

Rice seeded and transplanted irrigated by drip by gravitation and solar pump

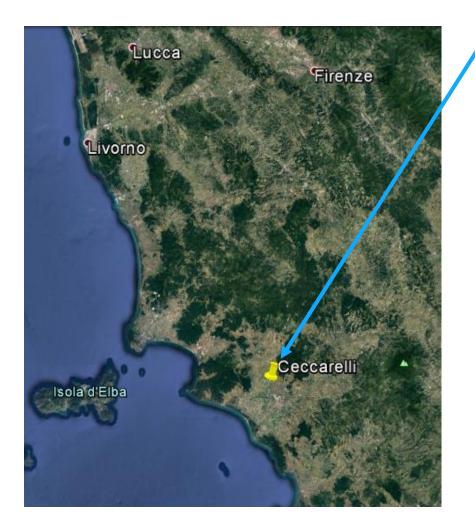
Corn seeded in two times irrigated by drip by gravitation and and solar pump

Soybean irrigated by drip by gravitation and by solar pump

THE FUTURE

NETAFIM

DEMO FIELD EXPO 2015 USE SLOPE AND MARGINAL SOIL

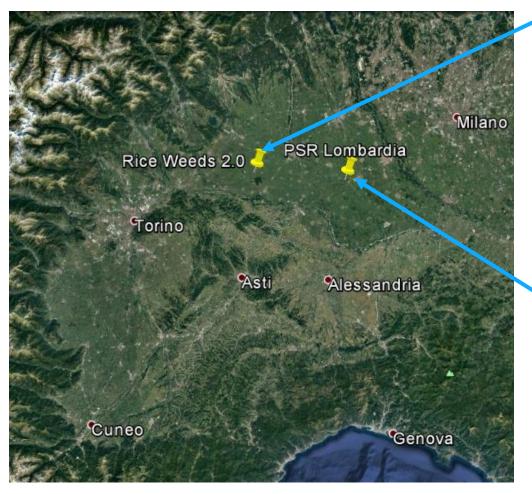


AgronFly

DEMO FIELD EXPO 2015 USE SLOPE AND MARGINAL SOIL

Log to set and the set

DRIP IRRIGATED RICE LIKE ROTATION CROP - 2016



- Ceccarelli Farm is using drip irrigation in SDI from 3 years
- Trial target: compare rice monoculture and a 3 year rotation
- 2 different drip irrigation systems, sub-surface vs surface drip irrigation
- 2 different fertilization system, fertigation alone vs a combined mechanical system

📣 NETAFIM

RICE SDI AND MULCHING FOR ORGANIC 2016

- Rice Weeds 2.0 is a trial in SDI for weeds control and mulching on a typical soil for rice (medium-silty)
- Is in Garrione Farm, an historical place, in the core of the rice area
- PSR Lombardia is a trial in SDI for weeds control and mulching on very sandy soil
- Is in Baldi Farm, rice growers from 4 generations

🜢 NETAFIM

TRIALS 2016: RICE WEEDS 2.0 & PSR LOMBARDIA

- Use a prototype machinery for lay down the lines, mulching and rice seed
- Twin installation of drip irrigation in SDI 25 cm deep
- Two different kind of soil
- Verifiy and confirm the protocol for Clearfield var. (Luna CL) weeds control
- Achieve high yield by drip irrigation in shallow SDI

Baldi Farm May 2016

G THE WO ORE WITI Baldi Farm July 2016

Garrione Farm May 2016

Garrione Farm July 2016

RICE BY DRIP - RESULTS

- Drip irrigation of rice is innovative technology, reliable and sustainable
- It makes use of the resources more effectively and efficiently increasing the yield
- Drip irrigation is used to provide, not only water, but also fertilizers (fertigation)
- The drip uses 45-50% less water and up to 30% less nutrients to achieve the same target yield
- Water saving between 10-20.000 m3/ha

RICE BY DRIP - RESULTS

- The aerobic soil condition means many advantages and environmental benefits
- In drip irrigation was observed significant reduction in emissions of greenhouse gases (CO2 and CH4) and groundwater pollution
- The use of marginal soils would extend the UAA of at least 20%
- Produce more rice with less resources by limiting the environmental impact of the cultivation

RICE BY DRIP - RESULTS

- The drip irrigation, through the diffusion, is a technique which promotes aerobic conditions of the soil
- Arsenic accumulation in rice grain is enhanced by flood irrigation even in soil with low As content
- Drip irrigation can greatly decrease the risk of As accumulation in rice grain
- Weeds control and temperature delta issues can be solved using the correct protocol, right varieties, and mulch
- **Mulching** is also an opportunity for organic rice cultivation and need specific machinery

CONCLUSION

- More than 10 years of experience
- We can bring out of the chambers of paddy rice cultivation using the drip irrigation
- Drip irrigation is a candidate to be the irrigation of the future (SDI in crop rotation)
- Organic cultivation and conservation agriculture are the partner elected for the drip irrigation
- Research continue to demonstrate that is the right way

GROWING RICE BY DRIP WITH LESS WATER AND ARSENIC FOR GLOBAL FOOD SECURITY Italia experience 2010-16

THANK YOU

Modern Technologies of Rice Growing Global Food and Environmental Safety August 9-12/08/2016

Alberto Vezio Puggioni Marco Panizza

